Université Cadi Ayyad Faculté des Sciences Semlalia-Marrakech Département de Physique

> Module de physique - Mécanique du Point Matériel Série N° 4 Filières SMP/SMC/SMA

Exercice 1 : Energie mécanique et trajectoire

Considérons un point matériel M de masse m soumis à l'interaction gravitationnelle par une masse ponctuelle M_s située au point O. Soit le référentiel galiléen $\mathcal{R}(O,XYZ)$.

- 1. Montrer que le moment cinétique est conservé. En déduire que le mouvement est plan.
 - On choisit \mathcal{R} tel que le mouvement de M soit dans le plan (OXY). On utilise dans la suite de l'exercice les coordonnées polaires (ρ, φ) .
- 2. Calculer l'énergie cinétique E_c et l'énergie potentielle E_p de M en prenant $\lim_{\rho \to +\infty} E_p(\rho) = 0$. En déduire que l'énergie mécanique de M est donnée par

$$E_m = \frac{1}{2}m\dot{\rho}^2 + \frac{mC^2}{2\rho^2} + \frac{K}{\rho}$$

en explicitant l'expression de K et de la constante des aires C.

- 3. On pose $\rho = \frac{1}{u}$. Retrouver l'expression de $E_m = f(u, \frac{du}{d\varphi})$.
- 4. En utilisant le théorème de l'énergie mécanique, montrer que l'équation du mouvement en $u(\varphi)$ est

$$\frac{d^2u}{d\varphi^2} + u = -\frac{K}{mC^2}$$

5. Résoudre l'équation du mouvement en $u(\varphi)$. En déduire que l'équation du mouvement en $\rho(\varphi)$ est de la forme

$$\rho = \frac{p}{1 + e\cos(\varphi - \varphi_0)}.$$

Quelle est la nature de la trajectoire en précisant les expressions de p et de e?

6. En utilisant l'expression de E_m en fonction de $u(\varphi)$, montrer que

$$E_m = \frac{GM_sm}{2p} (e^2 - 1).$$

Discuter la nature de la trajectoire en fonction de e et déduire le signe de E_m pour chaque type de trajectoire.

7. En utilisant la conservation de l'énergie mécanique, déduire que l'excentricité dans ce cas est donnée par

$$e = \sqrt{1 + \frac{pV_0^2}{GM_s} - \frac{2p}{\rho_0}}$$

où
$$\rho(t=0)=\rho_0$$
 et $|\vec{V}(\mathcal{M}/\mathcal{R})|(t=0)=V_0$.

Exercice 2 : Cas d'une trajectoire circulaire

On reprend les résultats de l'exercice précédent.

- 1. A quelle condition la trajectoire de M est circulaire? On suppose que cette condition est vérifiée dans la suite de l'exercice et on note le rayon de la trajectoire par $\rho = R$.
- 2. En utilisant le PFD, montrer que le mouvement circulaire est <u>uniforme</u>. En déduire que l'expression du module de la vitesse de M en fonction de R est donnée par

$$|\vec{V}(M/\mathcal{R})| = \sqrt{\frac{GM_s}{R}}.$$

3. Montrer que la période de révolution T de M est donnée par

$$T^2 = \frac{4\pi^2 R^3}{GM_s}.$$

Commenter ce résultat.

4. Montrer que l'énergie mécanique E_m dans ce cas vérifie les relations suivantes

$$E_m = -E_c = \frac{1}{2}E_p$$

où E_c et E_p sont respectivement les énergies cinétique et potentielle.

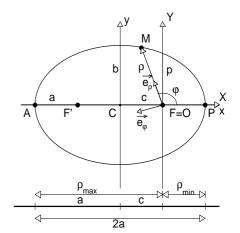
Exercice 3 : Cas d'une trajectoire elliptique

On utilise les résultats de l'exercice 1.

- 1. A quelle condition le mouvement de M est elliptique? On suppose que c'est le cas pour le reste de l'exercice avec $\varphi_0 = 0$.
- 2. La figure ci-contre, représente l'ellipse dans le référentiel \mathcal{R} où le foyer F de l'ellipse est confondu avec O. Soit $\mathcal{R}'(C,xyz)$ un référentiel immobile par rapport à \mathcal{R} , voir figure.

- 3. Donner les équations de l'ellipse dans \mathcal{R} et dans \mathcal{R}' en fonction de p et de e.
- 4. En utilisant les notations de la figure, montrer que les expressions des paramètres géométriques de l'ellipse sont

$$\rho_{min} = p/(1+e)$$
 $\rho_{max} = p/(1-e)$
 $a = p/(1-e^2)$
 $b = p/\sqrt{1-e^2}$
 $c = ep/(1-e^2)$



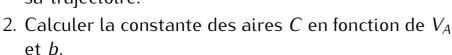
- 5. Calculer les vitesses de M respectivement à l'apogée, A, et à la périgée, P en fonction de (p, e, G, M_s) .
- 6. En déduire que $E_m = -\frac{GM_sm}{2a}$.

Dans la suite de la série, on utilise les résultats des exercices précédents sans les

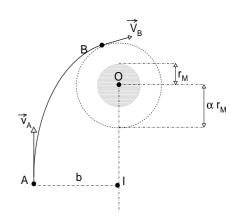
Exercice 4 : Mise en orbite d'une sonde spatiale

On souhaite mettre une sonde spatiale S de masse m_S en orbite autour de Mars. La vitesse de la sonde au point de lancement A est \vec{V}_A et présente un "paramètre d'impact" b, voir figure ci-contre.

1. On suppose qu'au point A la sonde S est trés éloignée de Mars et que l'on peut ainsi négliger l'énergie gravitationnelle. Calculer l'énergie mécanique de la sonde S au point A et déduire la nature de sa trajectoire.



3. Sachant que la trajectoire d'approche est tangente au cercle de rayon αr_M en B, calculer le module de la vitesse en B, V_B , en fonction de V_A , r_M , α et b.



- 4. Exprimer le paramètre d'impact b en fonction de r_M , V_A , la masse de Mars M_M et α . En déduire la valeur du paramètre d'impact b_o pour que la sonde se pose sur la surface de Mars.
- 5. Déterminer le module de la vitesse V_{orb} d'un objet sur l'orbite circulaire de rayon αr_M .
- 6. On veut que la sonde passe sur l'orbite circulaire de rayon αr_M . Calculer la variation de vitesse à communiquer à la sonde au point B.

3