Université Cadi Ayyad Faculté des Sciences Semlalia-Marrakech Département de Physique

Corrigé du Contrôle de Rattrapage Mécanique du Point Matériel - Filière SMIA/S1 Temps imparti : 2 heures

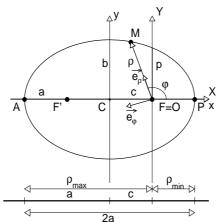
Considérer toute réponse correcte autre que celle proposée en respectant la note qui lui est réservée.

Corrigé: Questions de cours (3 points)

On rappelle que la trajectoire d'un point matériel M dans un champs de force central est une conique d'équation, en coordonnées polaires (ρ, φ) , $\rho = \frac{p}{1 + e\cos(\varphi - \varphi_0)}$ où p = et e l'excentricité de la conique. On note par $\mathcal{R}(O, XYZ)$ un référentiel galiléen et que le mouvement de M a lieu dans le plan (Oxy).

- 1. le mouvement de M est une ellipse si l'excentricité de l'ellipse vérifie 1 < e < 1 (0.25pt. Le choix $\phi_0 = 0$ correspond à la situation où les axes de symétries de l'ellipse sont respectivement (Ox) et (Oy) (0.25pt.
- 2. On considère dans la suite que le mouvement est elliptique et que $\varphi_0 = 0$. Soit $\mathcal{R}'(C, xyz)$ un réferentiel immobile par rapport à \mathcal{R} où C est le centre de l'ellipse, voir figure ci-contre.

On rappelle que pour une ellipse, la relation |FM| + |F'M| = 2a est toujours vérifiée quelque soit la position de M sur l'ellipse.



a. Calculons l'équation de la trajectoire dans le référentiel $\mathcal{R}(F, xyz)$, sachant que

$$\begin{cases} \rho^2 = x^2 + y^2 \\ \rho = p - e\rho\cos\theta = p - ex \end{cases}$$

ce qui donne

$$\rho^{2} = (p - ex)^{2} \implies x^{2} + y^{2} = p^{2} - 2epx + e^{2}x^{2}$$

$$\implies x^{2}(1 - e^{2}) + 2epx + y^{2} = p^{2}$$

$$\implies x^{2} + 2\frac{ep}{1 - e^{2}}x + \frac{y^{2}}{1 - e^{2}} = \frac{p^{2}}{1 - e^{2}}$$

$$\implies \left(x + \frac{ep}{1 - e^{2}}\right)^{2} + \frac{y^{2}}{1 - e^{2}} = \frac{p^{2}}{1 - e^{2}} + \frac{e^{2}p^{2}}{(1 - e^{2})^{2}}$$

$$\implies \left(x + \frac{ep}{1 - e^{2}}\right)^{2} + \frac{y^{2}}{1 - e^{2}} = \frac{p^{2}}{(1 - e^{2})^{2}}$$

L'équation dans le référentiel $\mathcal{R}'(C, XYZ)$ s'obtient en procédant au changement de variable

$$\left\{ \begin{array}{lcl} X & = & x + \frac{ep}{1 - e^2} & (e \neq 1) \\ Y & = & y. \end{array} \right.$$

L'équation prend la forme suivante en divisant par $p^2/(1-e^2)^2$,

$$\frac{X^2}{\frac{p^2}{(1-e^2)^2}} + \frac{Y^2}{\frac{p^2}{1-e^2}} = 1.$$
 (1.0pt)

b. Calcul des paramètres géométriques de l'ellipse :

 ρ_{min} :

$$\rho_{min} = \rho(\varphi = 0) \Longrightarrow \rho_{min} = \frac{p}{1 + e\cos(0)} = \frac{p}{1 + e}$$
 (0.25p)

 ρ_{max} :

$$\rho_{max} = \rho(\varphi = \pi) \Longrightarrow \rho_{max} = \frac{p}{1 + e\cos(\pi)} = \frac{p}{1 - e}$$
 (0.25pt

<u>a et b</u>: on utilise l'équation de la conique dans le référentiel $\mathcal{R}'(C, XYZ)$ ce qui permet d'écrire

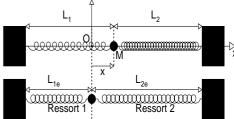
$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = \frac{X^2}{\frac{p^2}{(1 - e^2)^2}} + \frac{Y^2}{\frac{p^2}{1 - e^2}} = 1 \Longrightarrow a = \frac{p}{1 - e^2} \quad \textbf{0.25pt} \quad \text{et} \quad b = \frac{p}{\sqrt{1 - e^2}} \quad \textbf{0.25pt}.$$

 \underline{c} : la distance du foyer de l'ellipse F au centre C est donnée par

$$c = a - \rho_{min} = a - \frac{p}{1+e} = a - a\frac{1-e^2}{1+e} = a - a(1-e) \Longrightarrow c = ea = \frac{ep}{1-e^2}.$$
 (0.5pt)

Corrigé: Système oscillant à deux ressorts (6 points)

Un point matériel M de masse m, attaché de chaque côté à deux ressorts de constantes de raideur respectives k_1 et k_2 et de longueurs à vide L_{01} et L_{02} . M se déplace sans frottement selon l'axe horizontal (Ox) d'un repère $\mathcal{R}(O, xyz)$ considéré galiléen, voir figure ci-contre. A l'équilibre, les ressorts ont respectivement une longueur L_{1e} et L_{2e} et M est confondu avec O.



On écarte M de sa position d'équilibre et on le lache sans vitesse initiale. La position de M est repérée par x.

1. Soient $(\vec{i}, \vec{j}, \vec{k})$ la base cartésienne de \mathcal{R} . Les forces appliquées à M sont le poids $m\vec{g} = -mg\vec{j}$, la réaction normale $\vec{R} = R_N \vec{j}$, puisque les frottements sont négligeables, et les deux forces de rappels $\vec{F}_1 = -k_1 (L_{1e} - L_{01}) \vec{i}$ et $\vec{F}_2 = +k_2 (L_{2e} - L_{02}) \vec{i}$. Notons que si le ressort (1) est comprimé le ressort (2) est étiré et que \vec{F}_1 et \vec{F}_2 sont toujours de sens opposé. Comme M est en équilibre alors la somme des forces est nulle et donc

$$-\left[k_1 \left(L_{1e} - L_{01}\right) - k_2 \left(L_{2e} - L_{02}\right)\right] \vec{i} + \left(R_N - mg\right) \vec{j} = 0$$

et par projection sur l'axe (Ox), nous obtenons

$$k_1 (L_{1e} - L_{01}) = k_2 (L_{2e} - L_{02})$$
 (0.5pt)

qui n'est d'autre que la relation recherchée.

- 2. On note par L_1 et L_2 les allongements à l'instant t respectivement des ressorts (1) et (2).
 - a. Nous avons $\overrightarrow{OM} = x\vec{i} \Longrightarrow \vec{V}(M/\mathcal{R}) = \dot{x}\vec{i}$. L'énergie cinétique est ainsi égale à $E_c = \frac{1}{2}m\dot{x}^2$

b. Les forces appliquées à M sont $-mg\vec{j}$, $\vec{R} = R_N\vec{j}$, $\vec{F_1} = -k_1(L_1 - L_{01})\vec{i}$ et $\vec{F_2} = -k_2(L_2 - L_{02})\vec{i}$. Comme le déplacement se fait le long de l'axe (Ox), alors $d\overrightarrow{OM} = dx\vec{i}$ alors

$$\begin{split} \delta W(-mg\vec{j}) &= -mgdx\vec{j} \cdot \vec{i} = 0 & \textbf{0.25pt} \\ \delta W(R_N\vec{j}) &= R_N\vec{j} \cdot \vec{i} = 0 & \textbf{0.25pt} \\ \delta W(\vec{F_1}) &= -k \left(L_1 - L_{01} \right) \vec{i} \cdot \vec{i} \neq 0 & \textbf{0.25pt} \\ \delta W(\vec{F_2}) &= -k \left(L_2 - L_{02} \right) \vec{i} \cdot \vec{i} \neq 0 & \textbf{0.25pt} \end{split}$$

et donc seules les forces de rappel travaillent.

c. Nous avons, en utilisant l'indication donnée

$$E_{p1} = \frac{1}{2}k_1 (L_1 - L_{01})^2 \text{ et } E_{p2} = \frac{1}{2}k_2 (L_2 - L_{02})^2.$$
 (0.25p)

En explicitant les expressions ci-dessus, nous obtenons

$$E_{p1} = \frac{1}{2}k_1 (L_1 - L_{1e} + L_{1e} - L_{01})^2$$

$$= \frac{1}{2}k_1 \left[(L_1 - L_{1e})^2 + (L_{1e} - L_{01})^2 + 2(L_1 - L_{1e})(L_{1e} - L_{01}) \right]$$

$$= \frac{1}{2}k_1 \left[x^2 + (L_{1e} - L_{01})^2 + 2x(L_{1e} - L_{01}) \right]$$

$$\boxed{ 0.25pt}$$

où $x = L_1 - L_{1e}$. De même

$$E_{p2} = \frac{1}{2}k_2\left[x^2 + (L_{2e} - L_{02})^2 - 2x(L_{2e} - L_{02})\right]$$
 (0.25pt)

sachant que $L_2 - L_{2e} = -x$. Ce qui donne pour l'énergie potentielle

$$E_{p1} + E_{p2} = \frac{1}{2} (k_1 + k_2) x^2 + [k_1 (L_1 - L_{1e}) - k_2 (L_2 - L_{2e})] x + \frac{1}{2} k_1 (L_{1e} - L_{01})^2 + \frac{1}{2} k_2 (L_{2e} - L_{21})^2$$

$$= \frac{1}{2} (k_1 + k_2) x^2 + \frac{1}{2} k_1 (L_{1e} - L_{01})^2 + \frac{1}{2} k_2 (L_{2e} - L_{21})^2.$$

$$\boxed{\textbf{0.75pt}}$$

L'énergie mécanique est ainsi égale à

$$E_m = E_c + E_{p1} + E_{p2}$$

$$= \frac{1}{2}m\dot{x}^2 + \frac{1}{2}(k_1 + k_2)x^2 + \frac{1}{2}k_1(L_{1e} - L_{01})^2 + \frac{1}{2}k_2(L_{2e} - L_{21})^2$$
(0.25p)

et qui n'est d'autre que la relation recherchée.

d. Comme les forces qui travaillent sont conservatives, alors l'énergie mécanique est une intégrale première et donc

$$\frac{dE_m}{dt} = 0 \quad \begin{array}{rcl} & & \\ \hline 0.25pt \\ \\ \Longrightarrow m\dot{x}\ddot{x} + (k_1 + k_2)\,x\dot{x} & = 0 \\ \\ \Longrightarrow \ddot{x} + \frac{k_1 + k_2}{m}x & = 0 \text{ puisque } \dot{x} \neq 0. \end{array}$$

l'équation du mouvement est une équation différentielle de second ordre à coefficients constants et sans second membre. L'équation caractéristique est $r^2 + \frac{k_1 + k_2}{m} = 0 \Longrightarrow r_{\pm} = \pm i \sqrt{\frac{k_1 + k_2}{m}} = \pm i \omega_0$ La solution générale est

$$x(t) = Ae^{+i\omega_0 t} + Be^{-i\omega_0 t}$$
 (0.25pt

où A et B sont déterminées à partir des conditions initiales comme suit

$$A+B = x(0) = x_0$$

 $i\omega_0(A-B) = \dot{x}(t=0) = 0 \Longrightarrow A = B = \frac{x_0}{2}$

d'où
$$x(t) = \frac{x_0}{2} \left(e^{i\omega_0} + e^{-i\omega_0 t} \right) = \frac{x_0}{2} \times 2\cos\omega_0 t = x_0\cos\omega_0 t.$$
 (1.0pt) La fréquence est donc $f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{m}}$.

Corrigé: Confinement d'un électron (11 points)

On cherche à piéger un électron dans une petite région de l'espace à l'aide d'un champ électromagnétique, on parle alors de confinement d'un électron. Le mouvement de l'électron, de masse m et de charge -e, est étudié dans un référentiel $\mathcal{R}(O,xyz)$, considéré galiléen, muni de la base cartésienne $(\vec{i},\vec{j},\vec{k})$. La position de l'électron est repérée par les coordonnées cartésiennes (x,y,z). A l'instant initial, l'électron se trouve en O avec la vitesse $\vec{v}_0 = v_{0x}\vec{i} + v_{0z}\vec{k}$. On néglige le poids de l'électron dans la suite du problème.

1. Partie I : Mouvement de l'électron dans un champ magnétique uniforme :

L'électron se déplace dans une région où règne un champ magnétique uniforme $\vec{B} = B\vec{k}, B > 0$. Il est soumis à la force $\vec{F}_B = -e\vec{v} \wedge \vec{B}$, où \vec{v} est la vitesse de l'électron dans \mathcal{R} . On pose $\omega_c = \frac{eB}{m}$.

a. La seule force à laquelle l'électron est soumis est la force magnétique. Le PFD donne, étant donné que \mathcal{R} est galiléen,

$$\begin{split} m\frac{d\vec{v}}{dt}\bigg|_{\mathcal{R}} &= -e\vec{v}\wedge\vec{B} \\ \Longrightarrow \frac{d\vec{v}}{dt}\bigg|_{\mathcal{R}} &= \frac{eB}{m}\vec{k}\wedge\vec{v}. \\ &= \frac{d\|\vec{v}\|}{dt}\frac{\vec{v}}{\|\vec{v}\|} + \vec{\Omega}(\vec{v}/\mathcal{R})\wedge\vec{v} \\ \Longrightarrow \frac{d\|\vec{v}\|}{dt} &= 0. \Longrightarrow \|\vec{v}\| \text{ est constante. } \boxed{\textbf{0.5pt}} \end{split}$$

b. Comme la force magnétique n'a pas de composante selon l'axe (Oz) diculaire à $\vec{B} = B\vec{k}$, alors la projection du PFD selon (Oz) donne

$$m\ddot{z} = 0 \quad \boxed{\textbf{0.25pt}} \Longrightarrow \dot{z} = Cst = \dot{z}(t=0) = v_{0z} \quad \boxed{\textbf{0.25pt}} \Longrightarrow z(t) = v_{0z}t + z(t=0) = v_{0z}t. \quad \boxed{\textbf{0.25pt}}$$

Le mouvement selon (Oz) est un mouvement rectiligne uniforme. (0.25pt

c. On s'intéresse à la projection du mouvement de l'électron dans le plan (Oxy).

^{1.} Pour que l'électron soit confiné, il suffit que son mouvement soit borné, c'est à dire les valeurs prises par ses coordonnées soit bornées dans la petite région de l'espace.

c.1. L'expression de la force magnétique est

$$-e\vec{v} \wedge B\vec{k} = -eB\left(v_x\vec{i} + v_y\vec{j} + v_z\vec{k}\right) \wedge \vec{k} = -eB\left(-v_x\vec{j} + v_y\vec{i}\right)$$
$$= -eB\left(v_y\vec{i} - v_x\vec{y}\right)$$

Les projections du PFD sur les axes (Ox) et (Oy) donne

$$m\frac{dv_x}{dt} = -eBv_y \Longrightarrow \frac{dv_x}{dt} = -\frac{eB}{m}v_y \quad \textbf{0.25pt}$$

$$m\frac{dv_y}{dt} = eBv_x \quad \textbf{0.25pt} \Longrightarrow \frac{d^2v_y}{dt^2} = \frac{eB}{m}\frac{dv_x}{dt} = \left(\frac{eB}{m}\right)^2v_y$$

$$\Longrightarrow \frac{d^2v_y}{dt^2} + \left(\frac{eB}{m}\right)^2v_y = 0 \quad \textbf{0.25pt}$$

Cette dernière est une équation différentielle de second ordre à coefficients constants et sans second membre. La solution est alors

$$v_y(t) = A\sin(\frac{eB}{m}t - \varphi_0)$$

Nous avons également $v_x(t) = \frac{m}{eB} \frac{dv_y}{dt} = A\cos(\frac{eB}{m}t - \varphi_0)$. Nous avons $v_y(0) = 0 = -A\sin\varphi_0 \Longrightarrow \varphi_0 = 0$. De même $v_x(0) = v_{0x} = A$ ce qui donne pour les solutions

$$v_x(t) = v_{0x} \cos\left(\frac{eB}{m}t\right)$$
 (0.5pt)
 $v_y(t) = v_{0x} \sin\left(\frac{eB}{m}t\right)$. (0.5pt)

c.2. Nous en déduisons

$$\dot{x} = v_x(t) \Longrightarrow x(t) = v_{0x} \frac{eB}{m} \sin\left(\frac{eB}{m}t\right) + x(t=0) = \frac{v_{0x}}{\omega_c} \sin\omega_c t.$$

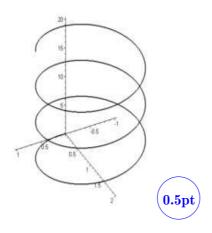
$$\dot{y} = v_y(t) \Longrightarrow y(t) = -\frac{v_{0x}eB}{m} \cos\left(\frac{eB}{m}t\right) + Cst.$$

Comme $y(t=0)=0=-\frac{v_{0x}eB}{m}+Cst\Longrightarrow Cst=\frac{v_{0x}eB}{m}.$ Ce qui donne finalement

$$x(t) = \frac{v_{0x}}{\omega_c} \sin \omega_c t \quad \textbf{0.5pt}$$

$$y(t) = +\frac{v_{0x}}{\omega_c} [1 - \cos \omega_c t] \quad \textbf{0.5pt}$$

d. La trajectoire est hélicoidale dont l'allure est comme suit



L'électron n'est pas piégé car comme son mouvement est rectiligne selon (Oz) et donc il va s'éloigner de O (0.25pt.

2. Partie II : Mouvement de l'électron dans un champ électrique quadrupolaire

On considère un champ électrique quadrupolaire ayant pour expression $\vec{E} = -\alpha \left(x\vec{i} + y\vec{j} - 2z\vec{k} \right), \alpha > 0.$ On considère que l'électron est soumis uniquement à la force électrique $\vec{F} = -e\vec{E}$. On pose $\omega_0 = \sqrt{\frac{2\alpha e}{m}}$

a. La seule force est $\vec{F} = e\alpha \left(x\vec{i} + y\vec{j} - 2z\vec{k} \right)$. Le PFD donne

$$m\vec{\gamma}(M/\mathcal{R}) = \vec{F}$$

$$m\left(\ddot{x}\vec{i} + \ddot{y}\vec{j} + \ddot{z}\vec{k}\right) = e\alpha\left(x\vec{i} + y\vec{j} - 2z\vec{k}\right)$$

et en projetant sur les axes, nous obtenons

$$\implies \begin{cases} \ddot{x} = \frac{e\alpha}{m}x = \frac{\omega_0^2}{2}x & \textbf{0.25pt} \\ \ddot{y} = \frac{\omega_0^2}{2}y & \textbf{0.25pt} \\ \ddot{z} = -\omega_0^2z & \textbf{0.25pt} \end{cases}$$

b. L'équation selon (Oz) est

$$\ddot{z} + \omega_0^2 z = 0 \Longrightarrow z(t) = A\sin(\omega_0 t - \varphi_0)$$

Comme $z(t=0)=0=-A\sin\varphi_0 \Longrightarrow \varphi_0=0$. Et $\dot{z}(t=0)=v_{0z}=\omega_0 A\Longrightarrow A=v_{0z}/\omega_0$. Ce qui donne finalement

$$z(t) = \frac{v_{0z}}{\omega_0} \sin \omega_0 t.$$
 (0.75pt

La fréquence est ainsi égale à $\frac{\omega_0}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{2e\alpha}{m}}$ (0.25pt.

c. Les équations selon les axes (Oy) et (Oz) sont données par

$$\ddot{x} - \frac{1}{2}\omega_0^2 x = 0$$
 (0.25pt $\ddot{y} - \frac{1}{2}\omega_0^2 y = 0$ (0.25pt

$$\ddot{y} - \frac{1}{2}\omega_0^2 y = 0 \quad \textbf{(0.25p)}$$

L'équation différentielle en x est une équation différentielle de second ordre à coefficients constants et sans second membre. L'équation caractéristique a pour solutions $r_{\pm} = \pm \frac{\sqrt{2}}{2} \omega_0$ et l'équation horaire

est $x(t) = Ae^{+\frac{\sqrt{2}}{2}\omega_0 t} + Be^{-\frac{\sqrt{2}}{2}\omega_0 t}$ (0.5pt) On note que x peut prendre toutes les valeurs et donc non

(0.25pt). Par analogie, étant donnée que l'équation différentielle en y est similaire à celle en x, alors on en déduit que $y(t) = Ae^{+\frac{\sqrt{2}}{2}\omega_0 t} + Be^{-\frac{\sqrt{2}}{2}\omega_0 t}$ (0.25pt n'est pas borné également (0.25pt)

- d. Comme le mouvement de l'électron n'est pas borné dans le plan (Oxy), alors il ne peut pas être confiné par l'application seule du champ électrique quadrupolaire.
- 3. Partie III : Mouvement de l'électron dans les champs magnétique et électrique

L'électron est maintenant soumis simultanément au champ magnétique \vec{B} de la partie I et au champ électrique quadrupolaire \vec{E} de la partie II.

a. En explicitant les expressions de \vec{F}_B et celle de \vec{F} , nous avons

$$\begin{array}{rcl} m\vec{\gamma}(M/\mathcal{R}) & = & \vec{F}_B + \vec{F} \\ m\left(\ddot{x}\vec{i} + \ddot{y}\vec{j} + \ddot{z}\vec{k}\right) & = & -eB\left(\dot{y}\vec{i} - \dot{x}\vec{j}\right) + e\alpha\left(x\vec{i} + y\vec{j} - 2z\vec{k}\right) \end{array}$$

et en projetant sur les axes, nous obtenons

$$\implies \begin{cases} \ddot{x} = -\frac{eB}{m}\dot{y} + \frac{e\alpha}{m}x = -\omega_c\dot{y} + \frac{1}{2}\omega_0^2x & \mathbf{0.25pt} \\ \ddot{y} = \omega_c\dot{x} + \frac{1}{2}\omega_0^2y & \mathbf{0.25pt} \\ \ddot{z} = -\omega_0^2z & \mathbf{0.25pt} \end{cases}$$

b. L'équation selon (Oz) est identique à celle obtenue dans la question précédente et donc $z(t) = \frac{1}{2} \left(\frac{1}{2} \frac{1$

 $\frac{v_{0z}}{m} \sin \omega_0 t$. (0.25pt La fréquence est ainsi égale à $\frac{\omega_0}{2\pi} = \frac{e\alpha}{m\pi}$.

- c. Pour déterminer le mouvement de l'électron dans le plan (Oxy), on utilise la variable complexe u = x + iy.
 - **c.1.** Nous avons $\dot{u} = \dot{x} + i\dot{y}$ et $\ddot{u} = \ddot{x} + i\ddot{y}$. En multipliant l'équation en y par i et en sommant avec celle en x

$$\ddot{u} = i^2 \omega_c \dot{y} + \frac{1}{2} \omega_0^2 x + i \omega_c \dot{x} + i \frac{1}{2} \omega_0^2 y$$

$$= \frac{1}{2} \omega_0 u + i \omega_c \dot{u}$$

$$\Longrightarrow \ddot{u} - i \omega_c \dot{u} + \frac{1}{2} \omega_0^2 u = 0$$

$$\boxed{ \textbf{0.25pt} }$$

qui est une équation différentielle à coefficients constants et sans second membre.

c.2. Pour que l'électron soit piégé, il suffit que son mouvement dans le plan (Oxy) soit sinusoidal et donc u(t) doit être sinusoidale. L'équation caractéristique est

$$r^2 - i\omega_c r + \frac{1}{2}\omega_0^2 = 0$$
 (0.25pt

dont le discriminant est $\Delta = 2\omega_0^2 - \omega_c^2$. Pour que l'on ait une solution sinusoidal, alors $\Delta < 0$ (0.25pt et donc $\omega_c^2 > 2\omega_0^2 \Longrightarrow \omega_c > \sqrt{2}\omega_0$. Donc la valeur seuil est $\sqrt{2}\omega_0$ (0.25pt).