Université Cadi Ayyad Faculté des Sciences Semlalia-Marrakech Département de Physique

> Module de Mécanique du Point Matériel Série N⁰ 1 Filières SMA

Opération sur les vecteurs

Exercice 1

On donne les trois vecteurs $\vec{V}_1(1,1,0)$, $\vec{V}_2(0,1,0)$ et $\vec{V}_3(0,0,2)$.

- 1. Calculer les normes $\|\vec{V}_1\|$, $\|\vec{V}_2\|$ et $\|\vec{V}_3\|$. En déduire les vecteurs unitaires \vec{v}_1 , \vec{v}_2 et \vec{v}_3 des directions respectivement de \vec{V}_1 , \vec{V}_2 et de \vec{V}_3 .
- 2. Calculer $\cos(\widehat{v_1}, \widehat{v_2})$, sachant que l'angle correspondant est compris entre 0 et π .
- 3. Calculer $\vec{v}_1 \cdot \vec{v}_2$, $\vec{v}_2 \wedge \vec{v}_3$ et $\vec{v}_1 \cdot (\vec{v}_2 \wedge \vec{v}_3)$. Que représente chacune de ces trois grandeurs?

Exercice 2

L'objectif de cet exercice est de reformuler les expressions des opérations vectorielles en utilisant la fonction de Kronecker δ_{ij}^{-1} et le tenseur de Levi-Civita ϵ_{ijk}^{-2} . Les indices $i, j, k \in \{1, 2, 3\}$ étant donné que l'on travaille dans un espace vectoriel de dimension 3.

On considère un repère \mathcal{R} muni de la base orthonormée $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$. La propriété d'orthonormalité de la base se traduit par $\vec{e}_i \cdot \vec{e}_j = \delta_{ij}$, qui seront utilisés dans la suite de l'exercice, sauf mention contraire. Soient trois vecteurs $\vec{A}(a_1, a_2, a_3)$, $\vec{B}(b_1, b_2, b_3)$ et $\vec{C}(c_1, c_2, c_3)$.

- 1. Montrer que le produit scalaire $\vec{A} \cdot \vec{B} = \sum_{i=1,3} a_i b_i$.
- 2. Sachant que la $i^{\text{ème}}$ composante de $\vec{A} \wedge \vec{B}$ peut s'écrire comme suit $(\vec{A} \wedge \vec{B})_i = \sum_{j,k=1}^3 \epsilon_{ijk} a_j b_k$, en déduire que

$$\vec{A} \wedge \vec{B} = \sum_{i,j,k} \epsilon_{ijk} a_j b_k \vec{e}_i.$$

1. la fonction de Kronecker est définie par

$$\delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si non} \end{cases}$$

2. Le tenseur de Levi-Civita est défini par

$$\epsilon_{ijk} = \left\{ \begin{array}{ll} 0 & \text{si au moins deux indices sont \'egaux} \\ 1 & \text{si } (i,j,k) \in \{(1,2,3),(2,3,1),(3,1,2)\} \\ -1 & \text{si } (i,j,k) \in \{(1,3,2),(2,1,3),(3,2,1)\} \end{array} \right..$$

Le tenseur possède les propriétés suivantes, que l'on ne va pas démontrer

$$\sum_{i,j} \epsilon_{ijk} \epsilon_{ijl} = \delta_{kl} \quad \text{et} \quad \sum_{i} \epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}.$$

3. Montrer que le produit mixte

$$\vec{A} \cdot (\vec{B} \wedge \vec{C}) = \sum_{i,j,k} \epsilon_{ijk} a_i b_j c_k.$$

4. En utilisant le résultat de la question 2, montrer

$$\vec{A} \wedge (\vec{B} \wedge \vec{C}) = (\vec{A} \cdot C)\vec{B} - (\vec{A} \cdot B)\vec{C}$$

5. Montrer que

$$\left(\vec{A} \wedge \vec{B}\right) \cdot \left(\vec{C} \wedge \vec{D}\right) \ = \ \left(\vec{A} \cdot \vec{C}\right) \left(\vec{B} \cdot \vec{D}\right) - \left(\vec{A} \cdot \vec{D}\right) \left(\vec{B} \cdot \vec{C}\right).$$

Exercice 3 : Différentielle et dérivée d'un vecteur unitaire

Considérons la position d'un point M dans le repère $\mathcal{R}(O,xyz)$. Soient $(\vec{i},\vec{j},\vec{k})$, $(\vec{e}_{\rho},\vec{e}_{\varphi},\vec{k})$ et $(\vec{er},\vec{e\theta},\vec{e\varphi})$ respectivement les bases cartésienne, cylindrique et sphérique associées à ce repère.

1. Calculer

$$\frac{\partial \vec{e}_{\rho}}{\partial \varphi}$$
 , $\frac{\partial \vec{e}_{\varphi}}{\partial \varphi}$ et $\frac{\partial \vec{k}}{\partial \varphi}$.

- 2. En déduire $d\vec{e}_{\rho}$ et $d\vec{e}_{\varphi}$ dans la base cartésienne.
- 3. Montrer que les différentielles des vecteurs de la base cylindrique peuvent se mettre sous la forme

$$d\vec{e}_{\rho} = dt\vec{\Omega} \wedge \vec{e}_{\rho} \text{ et } d\vec{e}_{\varphi} = dt\vec{\Omega} \wedge \vec{e}_{\varphi}$$

en précisant l'expression du vecteur rotation $\vec{\Omega}$ des vecteurs de la base cylindrique par rapport à \mathcal{R} . Déduire les dérivées par rapport au temps des vecteurs de la base cylindrique dans \mathcal{R} .

4. Quel est le vecteur rotation de la base sphérique par rapport à \mathcal{R} ? En utilisant les résultats de la question précédente, déduire les expressions de

$$\frac{d\vec{e_r}}{dt}$$
, $\frac{d\vec{e_\theta}}{dt}$ et $\frac{d\vec{e_\varphi}}{dt}$.

Exercice 4: Mouvement sur une parabole

Un point matériel M se déplace selon une courbe d'équation polaire $r\cos^2\frac{\theta}{2}=a$ où a est une constante positive et $\theta\in[-\pi,+\pi[$.

- 1. Montrer que la trajectoire de M est une parabole et tracer sa représentation graphique.
- 2. On considère le cas où le module du vecteur vitesse est toujours proportionnel à r comme suit v = kr, où k est une constante positive.
 - a- Calculer en fonction de θ les composantes radiale et orthoradiale du vecteur vitesse de M.
 - **b-** Déterminer la loi du mouvement $\theta(t)$ sachant que $\theta(t=0)=0$ et que θ croit.

On donne
$$\int_0^{ heta} \frac{d heta}{\cos heta} = \mathbf{Log} \bigg| \mathbf{tg} \left(\frac{ heta}{2} + \frac{\pi}{4} \right) \bigg|.$$